Search results for "comparison theorem"
showing 5 items of 5 documents
Comparing the relative volume with a revolution manifold as a model
1993
Given a pair (P, M), whereM is ann-dimensional connected compact Riemannian manifold andP is a connected compact hypersurface ofM, the relative volume of (P, M) is the quotient volume(P)/volume(M). In this paper we give a comparison theorem for the relative volume of such a pair, with some bounds on the Ricci curvature ofM and the mean curvature ofP, with respect to that of a model pair\(\left( {\mathcal{P},\mathcal{M}} \right)\) where ℳ is a revolution manifold and\(\mathcal{P}\) a “parallel” of ℳ.
A comparison theorem for the mean exit time from a domain in a K�hler manifold
1992
Let M be a Kahler manifold with Ricci and antiholomorphic Ricci curvature bounded from below. Let ω be a domain in M with some bounds on the mean and JN-mean curvatures of its boundary ∂ω. The main result of this paper is a comparison theorem between the Mean Exit Time function defined on ω and the Mean Exit Time from a geodesic ball of the complex projective space ℂℙ n (λ) which involves a characterization of the geodesic balls among the domain ω. In order to achieve this, we prove a comparison theorem for the mean curvatures of hypersurfaces parallel to the boundary of ω, using the Index Lemma for Submanifolds.
Pappus type theorems for motions along a submanifold
2004
Abstract We study the volumes volume( D ) of a domain D and volume( C ) of a hypersurface C obtained by a motion along a submanifold P of a space form M n λ . We show: (a) volume( D ) depends only on the second fundamental form of P , whereas volume( C ) depends on all the i th fundamental forms of P , (b) when the domain that we move D 0 has its q -centre of mass on P , volume( D ) does not depend on the mean curvature of P , (c) when D 0 is q -symmetric, volume( D ) depends only on the intrinsic curvature tensor of P ; and (d) if the image of P by the ln of the motion (in a sense which is well-defined) is not contained in a hyperplane of the Lie algebra of SO ( n − q − d ), and C …
Mauro Picone, Sandro Faedo, and the numerical solution of partial differential equations in Italy (1928-1953)
2013
In this paper we revisit the pioneering work on the numerical analysis of partial differential equations (PDEs) by two Italian mathematicians, Mauro Picone (1885-1977) and Sandro Faedo (1913-2001). We argue that while the development of constructive methods for the solution of PDEs was central to Picone's vision of applied mathematics, his own work in this area had relatively little direct influence on the emerging field of modern numerical analysis. We contrast this with Picone's influence through his students and collaborators, in particular on the work of Faedo which, while not the result of immediate applied concerns, turned out to be of lasting importance for the numerical analysis of …
Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting
2018
We show existence of a unique solution and a comparison theorem for a one-dimensional backward stochastic differential equation with jumps that emerge from a L\'evy process. The considered generators obey a time-dependent extended monotonicity condition in the y-variable and have linear time-dependent growth. Within this setting, the results generalize those of Royer (2006), Yin and Mao (2008) and, in the $L^2$-case with linear growth, those of Kruse and Popier (2016). Moreover, we introduce an approximation technique: Given a BSDE driven by Brownian motion and Poisson random measure, we consider BSDEs where the Poisson random measure admits only jumps of size larger than $1/n$. We show con…